Research Article

Anti-Inflammatory Activity of Ethanolic, Hydroethanolic, Aqueous and Chloroform Extracts of *Nyctanthes Arbor-Tristis* Leaves

Sumitra Debnath^{*}, Archana Hazarika and Jadav Sarma

Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science, Assam Agricultural University, India

Abstract

Background: Nyctanthes arbor-tristis commonly known as Harsinghar, Night jasmine or Parijat. The present study was an attempt to evaluate the antiinflammatory activity of N. arbor-tristis leaf extract.

Method: Melonex was used as standard drug for evaluation of anti-inflammatory activity by Carrageenan induced hind paw oedema. The anti-inflammatory activity of the ethanolic, hydroethanolic, aqueous and chloroform extracts of *N. arbor-tristis* was evaluated using carrageenan induced hind paw edema method.

Result: NAEE at 250 mg/kg body weight showed significant (P<0.05) inhibition of paw volume in the later phase of inflammation i.e. in between 5 to 6 hours of observation period. Whereas NAEE at 500 mg/kg and 1000 mg/kg body weight showed inhibition of paw volume at 2 hours, but at 3 hours it showed maximum increase in paw volume. From 4 hours onwards upto 6 hours of observation period there was significant (P<0.05) inhibition of paw volume. NAHE at 250 mg/kg, 500 mg/kg and 1000 mg/kg body weight showed inhibition of paw volume. NAHE at 250 mg/ kg, 500 mg/kg and 1000 mg/kg body weight showed inhibition of paw volume at 2 hours, but at 3 hours it showed maximum increase in paw volume. From 4 hours onwards upto 6 hours of observation period there was significant (P<0.05) inhibition of paw volume. NAHE at 250 mg/kg body weight showed inhibition of paw volume. Trom 4 hours onwards upto 6 hours of observation period. NACE at 250 mg/kg, 500 mg/kg and 1000 mg/kg body weight showed inhibition of paw volume at 2 hours, but from 3 hours to upto 4 hours it showed increase in paw volume. From 5 hours there was significant (P<0.05) inhibition of paw volume upto 6 hours of observation period. NACE at 250 mg/kg, 500 mg/kg and 1000 mg/kg body weight also showed inhibition of paw volume at 2 hours, but at 3 hours it showed increase in paw volume. From 4 hour onwards there was significant (P<0.05) inhibition of paw volume upto 6 hours of observation period. NACE at 250 mg/kg, 500 mg/kg and 1000 mg/kg body weight also showed inhibition of paw volume at 2 hours, but at 3 hours it showed increase in paw volume. From 4 hour onwards there was significant (P<0.05) inhibition of paw volume upto 6 hours of observation period.

Keywords: Nyctanthes arbor-tristis; Anti-inflammatory; Carrageenan induced hind paw oedema method

Abbreviations

NAEE: Nyctanthes Arbor-Tristis Ethanolic Extract; NAHE: Nyctanthes Arbor-Tristis Hydroethanolic Extract; NAAE: Nyctanthes Arbor-Tristis Aqueous Extract; NACE: Nyctanthes Arbor-Tristis Chloroform Extract; NSAIDs: Non-Steroidal Anti-Inflammatory Drug; OECD: Organization for Economic Co-Operation and Development

Introduction

Inflammation is a pathophysiological condition of mammalian tissue to a different type of hostile agents including infectious organisms, toxic chemical substances, physical injury, or tumor growth leading to local accumulation of plasma fluid and blood cells. Edema formation, leukocyte infiltration, and granuloma formation exemplify such components of inflammation. The primary objective of inflammation is to localize and eradicate the irritant and repair the surrounding tissue (Wikipedia). For the survival of the host, inflammation is a necessary and is a beneficial process. However,

Citation: Debnath S, Hazarika A, Sarma J. Anti-Inflammatory Activity of Ethanolic, Hydroethanolic, Aqueous and Chloroform Extracts of *Nyc*-*tanthes Arbor-Tristis* Leaves. J Clin Pharmacol Ther. 2023;4(2):1043.

Copyright: © 2023 Sumitra Debnath

Publisher Name: Medtext Publications LLC

Manuscript compiled: May 04th, 2023

*Corresponding author: Sumitra Debnath, Master's of Veterinary Pharmacology and Toxicology, College of Veterinary Science, Assam Agricultural University, Khanapara, India, Tel: + 91-8256903651; Fax: +91-8256903651; E-mail: sumitradebnath99@gmail.com occasionally the inflammatory response fails to resolve itself once the injury or irritant has been removed. The consequence is that the resultant long term inflammation actually causes additional injury to the affected tissue. Some common condition caused by chronic inflammation is rheumatoid arthritis, eczema, and psoriasis. Mainly two types of anti-inflammatory agents are available such as glucocortico steroids and Nonsteroidal Anti-Inflammatory Drugs (NSAIDs). Non-Steroidal Anti-Inflammatory Drugs (NSAIDS), which function through the inhibition of enzyme cyclooxygenase, are a more favorable option for the treatment of chronic inflammatory disorders. But due to having harmful side effects, like gastric lesions, caused by NSAIDs and tolerance and dependence produced by opiates, the use of these drugs as analgesic agents has not been successful in all the cases. Therefore, analgesic drugs which do not contain any adverse side effects are being searched all over the world as alternatives to NSAIDs and opiates [1].

Inflammatory disorders are a major problem of concern in the cattle industry, particularly in drought-stricken animals, racehorses, and hunting dogs, among other species. The complete etiology of the inflammatory diseases is still not clear to the scientific community and due to many inflammatory pathways proposed, suggests that probably only a complex molecule can effectively compete with different macromolecular substrates. Inflammation may lead to joint tissue destruction, cancer, cardiovascular events, diabetes and brain liver kidney degenerative diseases (Wikipedia). However these conventional anti-inflammatory agents produced various adverse effects [2]. In order to avoid adverse effects, there is growing interest in the pharmacological evaluation of various plants used in Indian traditional system of medicine [3]. *N. arbor-tristis* commonly known as Harsinghar, Night jasmine or Parijat.

It is a shrub or small tree up to 10 m in height with gray to greenish rough bark distributed wild in Sub-Himalayan regions and Southwards to Godavari. In Indian garden it is also planted for ornamental purpose due to its highly sweet-smelling flowers. The leaves of *N. arbor-tristis* show antifungal activity against *Alternaria Alternate* [4]. Aqueous extract of leaves is proved to be hepatoprotective [4,5] isolated an alkaloid principle named nyctanthin form the leaves. Iridoid glucosides were isolated from the plant and have antileishmanial activity [6]. The present study was aimed to evaluate the anti-inflammatory activity of ethanolic, hydroethanolic, aqueous and chloroform extracts of *N. arbor-tristis* leaves in laboratory animals.

Materials and Methods

Plant material

The fresh leaves of *N. arbor-tristis* will be collected from in an around Khanapara campus in the month of July to September for pharmacological experimental purpose. Leaves were identified and authenticated by Botanical Survey of India (BSI), Eastern Regional Centre, Shillong.

Processing of plant materials

After identification and characterisation by BSI, leaves were further collected. The collected leaves were gently washed with fresh water to remove soil and dust particles. Leaves were then shade dried at room temperature for about 7-10 days. They were regularly turned over, to prevent fermentation and rot. Dried leaves were then grounded or pulverised to powder by Laboratory Willey Mill and kept at room temperature in air tight containers after proper labelling until preparation of extracts.

Preparation of ethanolic, hydroethanolic, aqueous and chloroform extracts

Powdered plant materials were extracted with ethanol, hydroethanol (1:1) and distilled water respectively as per the procedure of Prasad [7]. Finely powdered plant powders were soaked with individually for 72 hours, three times, with intermittent agitation. The extracts were then double filtered using muslin cloth and Whatman No.1 filter paper. The filtrate obtained was concentrated in rotary evaporator and completely dried over regulated water bath maintained at 50°C. The extracts were refrigerated at 4°C until the experiments for screening was done. Standard procedures [8,9] were used with a few modifications.

Experimental animals

Wistar albino mice weighing 30 g-40 g were taken from the Dept. of Veterinary Pharmacology and Toxicology, Assam Agricultural University, Khanapara. All the mice were kept in polypropylene cages and they were divided into groups of 6 mice each. Paddy husk was used as litter material which was regularly changed every week. All the animals were provided with a balanced ration and clean drinking water ad libitum and were maintained in standard laboratory conditions (12:12 hour light/dark) cycle at an ambient temperature ranging between (22°C-27°C).

Acute toxicity study

The study was carried out according to OECD (Organization for Economic Co-operation and Development) 425 guidelines. For acute toxicity study, nulliparous and non-pregnant female albino mice, weighing 30 g-4 g, were randomly selected. Ethanolic, hydroethanolic, aqueous and chloroform extracts of the leaves of *N. arbor-tristis* was

administered orally to the mice. Limit test was performed. Prior to administration of the test extracts animals were fasted overnight but given water ad libitum. Group-I served as vehicle control (20% Tween-80) and Group II-V kept ethanolic, hydroethanolic, aqueous and chloroform leaf extract of *N. arbor-tristis* @2000 mg/kg orally, as single dose. The animals were closely observed for behavioral changes, toxicity and mortality upto 72 hours and animals were further observed for 14 days to record mortality if any. Based on acute toxicity study three doses were selected and used for evaluation of anti-inflammatory activity in mice with six animals in each group for each of the following tests.

Anti-inflammatory activity

Carrageenan-induced hind paw oedema method: This test was performed according to the method of Winter et al. [10]. The paw volume was measured by using plethysmometer. The mice were divided into 14 groups of 6 animals each. Group I kept as vehicle control, Group II served as standard drug melonex @5 mg/kg. Group III-XIV received ethanolic, hydroethanolic, aqueous and chloroform leaf extract of *N. arbor-tristis* orally at the dose rate of 250 mg/kg, 500 mg/kg, 1000 mg/kg body weight respectively. The animals were pre treated with *N. arbor-tristis* extract orally 30 min prior to carrageenan injection. 0.1 ml of 1% carrageenan was injected subcutaneously under the planter surface of the right hind paw. Paw oedema volume was measured by plethysmometer at different time intervals i.e. 30 min (prior to carrageenan injection), 0 hr (at the time of carrageenan injection) and at 1, 2, 3, 4, 5, 6 hours after carrageenan injection.

Statistical analysis

Results were expressed as Mean \pm S.E.M. Statistical analysis was performed by MS-excel to calculate mean, Standard Error of Mean (SEM), Analysis of Variance (ANOVA), and co-efficient of correlation (r) values as per standard method Snedecor and Cochran.

Result

The anti-inflammatory activity of the ethanolic, hydroethanolic, aqueous and chloroform extracts of N. arbor-tristis was evaluated using carrageenan induced hind paw edema method. The paw volumes compared with "0" hour is displayed in (Table 1-4) (Figure 1-4). In the control group, the animals showed a biphasic reaction. The swelling increased instantly within the first hour and then it subsided in the second hour, only to increase again in the third hour which continued upto fifth hour and then it subsided. The resulting paw volumes at time 0, 1, 2, 3, 4, 5 and 6 hours are 0.89 ± 0.02 , 1.05 \pm 0.02, 0.95 \pm 0.02, 1.15 \pm 0.02, 1.22 \pm 0.03, 1.38 \pm 0.031 and 1.12 ± 0.03 respectively. Paw volume observed in Standard (Melonex) group are 0.26 ± 0.02 , 0.31 ± 0.02 and 0.38 ± 0.01 , 0.54 ± 0.02 , 0.61 \pm 0.01, 0.36 \pm 0.01 and 0.27 \pm 0.01 at time 0, 1, 2, 3, 4, 5 and 6 hours respectively. Standard drug increased paw volume significantly upto 4 hours. From 5 hours there was significant (P<0.05) inhibition of paw oedema upto 6 hours of observation period. NAEE at 250 mg/kg body weight showed significant (P<0.05) inhibition of paw volume in the later phase of inflammation i.e. in between 5 to 6 hours of observation period. Whereas NAEE at 500 mg/kg and 1000 mg/kg body weight showed inhibition of paw volume at 2 hours, but at 3 hours it showed maximum increase in paw volume. From 4 hours onwards upto 6 hours of observation period there was significant (P<0.05) inhibition of paw volume. NAHE at 250 mg/kg, 500 mg/kg and 1000 mg/kg body weight showed inhibition of paw volume at 2 hours, but at 3 hours it showed maximum increase in paw volume. From 4 hours onwards upto 6 hours of observation period there was significant (P<0.05)

Table 1: Anti-inflammatory activity of ethanolic leaf extract of Nyctanthes arbor-tristis on carrageenan induced hind paw oedema method.

Group		Time (hour)								
	0	1	2	3	4	5	6			
Control	0.89 ± 0.02	1.05 ± 0.02	0.95 ± 0.02	1.15 ± 0.02	1.22 ± 0.03	1.38 ± 0.03	1.12 ± 0.03			
Standard (Melonex)	0.26 ± 0.02	0.31 ± 0.02	0.38 ± 0.01	0.54 ± 0.02	0.61 ± 0.01	0.36 ± 0.01	0.27 ± 0.01			
NAEE (250 mg/kg)	0.31 ± 0.02	0.42 ± 0.02	0.60 ± 0.02	0.89 ± 0.03	0.95 ± 0.01	0.80 ± 0.03	0.71 ± 0.03			
NAEE (500 mg/kg)	0.31 ± 0.02	0.38 ± 0.03	0.36 ± 0.02	0.78 ± 0.02	0.61 ± 0.02	0.42 ± 0.02	0.36 ± 0.02			
NAEE (1000 mg/kg)	0.25 ± 0.01	0.62 ± 0.01	0.50 ± 0.02	0.91 ± 0.02	0.70 ± 0.02	0.50 ± 0.02	0.59 ± 0.03			
Fable 2: Anti-Inflammatory activity of hydroethanolic leaf extract of N arbor-tristis on carrageenan induced hind naw oedema method										

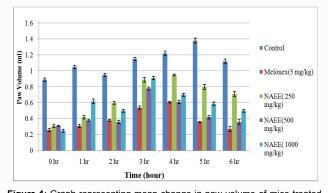

Time (hour)								
0	1	2	3	4	5	6		
0.89 ± 0.02	1.05 ± 0.02	0.95 ± 0.02	1.15 ± 0.02	1.22 ± 0.03	1.38 ± 0.03	1.12 ± 0.03		
0.26 ± 0.02	0.31 ± 0.02	0.38 ± 0.01	0.54 ± 0.02	0.61 ± 0.01	0.36 ± 0.01	0.27 ± 0.01		
0.35 ± 0.01	0.54 ± 0.02	0.49 ± 0.01	0.62 ± 0.02	0.59 ± 0.02	0.56 ± 0.02	0.45 ± 0.01		
0.32 ± 0.01	0.54 ± 0.01	0.45 ± 0.01	0.77 ± 0.01	0.64 ± 0.01	0.60 ± 0.02	0.45 ± 0.03		
0.31 ± 0.01	0.57 ± 0.01	0.47 ± 0.01	0.78 ± 0.03	0.63 ± 0.03	0.43 ± 0.03	0.32 ± 0.01		
	$\begin{array}{c} 0.89 \pm 0.02 \\ 0.26 \pm 0.02 \\ 0.35 \pm 0.01 \\ 0.32 \pm 0.01 \\ 0.31 \pm 0.01 \end{array}$	$\begin{array}{c c} 0.89 \pm 0.02 & 1.05 \pm 0.02 \\ 0.26 \pm 0.02 & 0.31 \pm 0.02 \\ 0.35 \pm 0.01 & 0.54 \pm 0.02 \\ 0.32 \pm 0.01 & 0.54 \pm 0.01 \\ 0.31 \pm 0.01 & 0.57 \pm 0.01 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	012345 0.89 ± 0.02 1.05 ± 0.02 0.95 ± 0.02 1.15 ± 0.02 1.22 ± 0.03 1.38 ± 0.03 0.26 ± 0.02 0.31 ± 0.02 0.38 ± 0.01 0.54 ± 0.02 0.61 ± 0.01 0.36 ± 0.01 0.35 ± 0.01 0.54 ± 0.02 0.49 ± 0.01 0.62 ± 0.02 0.59 ± 0.02 0.56 ± 0.02 0.32 ± 0.01 0.54 ± 0.01 0.45 ± 0.01 0.77 ± 0.01 0.64 ± 0.01 0.60 ± 0.02		

Table 3: Anti-inflammatory activity of aqueous leaf extract of N. arbor-tristis on carrageenan induced hind paw oedema method.

Time (hour)								
0	1	2	3	4	5	6		
0.89 ± 0.02	1.05 ± 0.02	0.95 ± 0.02	1.15 ± 0.02	1.22 ± 0.03	1.38 ± 0.03	1.12 ± 0.03		
0.26 ± 0.02	0.31 ± 0.02	0.38 ± 0.01	0.54 ± 0.02	0.61 ± 0.01	0.36 ± 0.01	0.27 ± 0.01		
0.25 ± 0.01	0.44 ± 0.02	0.31 ± 0.02	0.54 ± 0.01	0.61 ± 0.01	0.52 ± 0.02	0.44 ± 0.01		
0.25 ± 0.01	0.46 ± 0.01	0.35 ± 0.01	0.53 ± 0.01	0.63 ± 0.01	0.54 ± 0.01	0.44 ± 0.02		
0.25 ± 0.01	0.43 ± 0.01	0.34 ± 0.01	0.52 ± 0.02	0.70 ± 0.01	0.56 ± 0.01	0.46 ± 0.01		
	$\begin{array}{c} 0.89 \pm 0.02 \\ 0.26 \pm 0.02 \\ 0.25 \pm 0.01 \\ 0.25 \pm 0.01 \end{array}$		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 1 2 3 0.89 ± 0.02 1.05 ± 0.02 0.95 ± 0.02 1.15 ± 0.02 0.26 ± 0.02 0.31 ± 0.02 0.38 ± 0.01 0.54 ± 0.02 0.25 ± 0.01 0.44 ± 0.02 0.31 ± 0.02 0.54 ± 0.01 0.25 ± 0.01 0.46 ± 0.01 0.35 ± 0.01 0.53 ± 0.01	01234 0.89 ± 0.02 1.05 ± 0.02 0.95 ± 0.02 1.15 ± 0.02 1.22 ± 0.03 0.26 ± 0.02 0.31 ± 0.02 0.38 ± 0.01 0.54 ± 0.02 0.61 ± 0.01 0.25 ± 0.01 0.44 ± 0.02 0.31 ± 0.02 0.54 ± 0.01 0.61 ± 0.01 0.25 ± 0.01 0.46 ± 0.01 0.35 ± 0.01 0.53 ± 0.01 0.63 ± 0.01	012345 0.89 ± 0.02 1.05 ± 0.02 0.95 ± 0.02 1.15 ± 0.02 1.22 ± 0.03 1.38 ± 0.03 0.26 ± 0.02 0.31 ± 0.02 0.38 ± 0.01 0.54 ± 0.02 0.61 ± 0.01 0.36 ± 0.01 0.25 ± 0.01 0.44 ± 0.02 0.31 ± 0.02 0.54 ± 0.01 0.61 ± 0.01 0.52 ± 0.02 0.25 ± 0.01 0.46 ± 0.01 0.35 ± 0.01 0.53 ± 0.01 0.63 ± 0.01 0.54 ± 0.01		

Table 4: Anti-inflammatory activity of chloroform leaf extract of N. arbor-tristis on carrageenan induced hind paw oedema method.

Group	Time (hour)								
	0	1	2	3	4	5	6		
Control	0.89 ± 0.02	1.05 ± 0.02	0.95 ± 0.02	1.15 ± 0.02	1.22 ± 0.03	1.38 ± 0.03	1.12 ± 0.03		
Standard (Melonex)	0.26 ± 0.02	0.31 ± 0.02	0.38 ± 0.01	0.54 ± 0.02	0.61 ± 0.01	0.36 ± 0.01	0.27 ± 0.01		
NACE (250 mg/kg)	0.24 ± 0.01	0.65 ± 0.02	0.55 ± 0.04	0.79 ± 0.02	0.69 ± 0.02	0.51 ± 0.03	0.40 ± 0.02		
NACE (500 mg/kg)	0.23 ± 0.01	0.55 ± 0.02	0.44 ± 0.01	0.76 ± 0.01	0.63 ± 0.01	0.54 ± 0.01	0.44 ± 0.01		
NACE (1000 mg/kg)	0.26 ± 0.01	0.42 ± 0.01	0.33 ± 0.01	0.58 ± 0.03	0.55 ± 0.01	0.44 ± 0.01	0.36 ± 0.01		

Figure 1: Graph representing mean change in paw volume of mice treated with ethanolic leaf extracts of *N. arbor-trists* and melonex by carrageenan induced hind paw oedema method.

inhibition of paw volume. NAAE at 250 mg/kg, 500 mg/kg and 1000 mg/kg body weight showed inhibition of paw volume at 2 hours, but from 3 hours to upto 4 hours it showed increase in paw volume. From 5 hours there was significant (P<0.05) inhibition of paw volume upto 6 hours of observation period. NACE at 250 mg/kg, 500 mg/kg and 1000 mg/kg body weight also showed inhibition of paw volume at 2 hours, but at 3 hours it showed increase in paw volume. From 4 hour onwards there was significant (P<0.05) inhibition of paw volume upto 6 hours of observation period.

Discussion

Inflammation is a common phenomenon and it is a reaction of living tissue towards injury. For the investigation of antiinflammatory activity of *Nyctanthes arbor-tristis*, the commonly used *in vivo* model, the carrageenan-induced hind paw edema model by

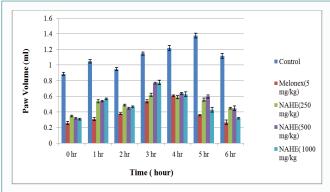
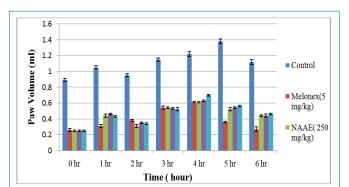
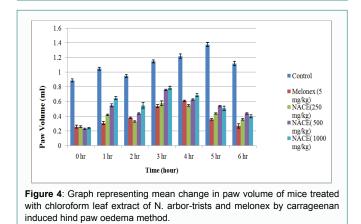




Figure 2: Graph representing mean change in paw volume of mice treated with hydroethanolic leaf extracts of *N. arbor-trists* and melonex by carrageenan induced hind paw oedema method.

[10]. It has been reported that inflammation occurs in two phases. The first phase begins immediately after the injection of carrageenan and diminishes at 2 hour. This phase of inflammation is accompanied by the release of serotonin and histamine while the second phase begins at 3 hour and persisted for at least 4 hour. This phase is mediated by several agents e.g., bradykinin, prostaglandin and lysosome [11]. The later phase of inflammation is reportedly, sensitive to most of the currently available drugs (NSAIDs). Upto 4 hours post carrageenan injection no significant oedema inhibitory response was observed at any of the doses and/or extracts used, except NAEE@250 mg/kg body weight. Significant anti-inflammatory activity started from 4 hours onwards following carrageenan injection. It is well known that both the cyclooxygenase and lipoxygenase pathways are involved in the inflammatory process however, cyclooxygenase inhibitors

Figure 3: Graph representing mean change in paw volume of mice treated with aqueous leaf extracts of *N. arbor-trists* and melonex by carrageenan induced hind paw oedema method.

are more effective in inhibiting carrageenan-induced inflammation [12]. Cyclooxygenase pathway is involved in the release of several mediators particularly prostaglandins, bradykinin and lysosomes thereby, the edema inhibition by *N. arbor-tristis* leaf extracts @1000 mg/kg doses may be due to the inhibition of these mediators. It has been reported that leaves of the *N. arbor-tristis* contain biologically active compounds such as glycosides, steroids, phenolic compounds, flavonoids and alkaloids [13-17]. In addition, Nurcan et al. [12] also observed involvement of these compounds in anti-inflammatory activity.

Conclusion

NAEE at 250 mg/kg body weight showed significant (P<0.05) inhibition of paw volume in the later phase of inflammation i.e. in between 5 to 6 hours of observation period. Whereas NAEE at 500 mg/kg and 1000 mg/kg body weight showed inhibition of paw volume at 2 hours, but at 3 hours it showed maximum increase in paw volume. From 4 hours onwards upto 6 hours of observation period there was significant (P<0.05) inhibition of paw volume. NAHE at 250 mg/kg, 500 mg/kg and 1000 mg/kg body weight showed inhibition of paw volume at 2 hours, but at 3 hours it showed maximum increase in paw volume. From 4 hours onwards upto 6 hours of observation period there was significant (P<0.05) inhibition of paw volume. NAAE at 250 mg/kg, 500 mg/kg and 1000 mg/kg body weight showed inhibition of paw volume at 2 hours, but from 3 hours to upto 4 hours it showed increase in paw volume. From 5 hours there was significant (P<0.05) inhibition of paw volume upto 6 hours of observation period. NACE at 250 mg/kg, 500 mg/kg and 1000 mg/kg body weight also showed inhibition of paw volume at 2 hours, but at 3 hours it showed increase in paw volume. From 4 hour onwards there was significant (P<0.05) inhibition of paw volume upto 6 hours of observation period.

Future prospects

- 1. This study was the preliminary step towards screening of *N*. *arbor-tristis* plant and it paves the way for further attention and research to identify the active compounds responsible for biological/pharmacological activities.
- 2. Further investigations are needed to find out the actual molecular mechanism of the active constituents present in the leaves of *Nyctanthes arbor-tristis*.

Acknowledgement

We are thankful to Dept of Pharmacology & Toxicology, College of Veterinary Science, Assam Agricultural University, and Khanapara for providing lab facility for carrying out anti-inflammatory activity.

Funding

This work was funded by College of Veterinary Science, Assam Agricultural University, Khanapara, India.

Animal Welfare and Ethics Statement

The animal experimentation was carried out according to the Committee for the Purpose of Control and Supervision of Experimental Animals (CPCSEA) guideline and Institutional Animal Ethical Committee Approved all the procedure for investing experimental pain in conscious animals.

References

- Whelton A. Nephrotoxicity of nonsteroidal anti-inflammatory drugs: physiologic foundations and clinical implications. Am J Med. 1999;106(5B):13S-24S.
- 2. Tripathi KD. Essentials of Medical. Publisher Ltd. 2015:453-454.
- Salunke PA, Bhurat MR, Salunkhe PS, Pawar SP, Pawara RH, Mutha RE. Evaluation of the antinociceptive properties from Nyctanthes arbor-tristis roots extracts using experimental animal models. J Pharm Res. 2012;5(6):3056-8.
- Chauhan JS, Saraswat M. A new glucoside from the stem of Nyctanthes arbor-tristis. Journal of the Indian Chemical Society. 1978;55(10):1049-51.
- Kiew R, Baas P. Nyctanthes is a member of Oleaceae. Proc Indian Acad Sc (Plant Sc). 1984;93(3):349-58.
- Tandon JS, Srivastava V, Guru PY. Iridoids: A new class of leishmanicidal agents from Nyctanthes arbortristis. J Nat Prod. 1991;54(4):1102-4.
- Prasad PVV, Subhaktha PKJP, Narayana A, Rao MM. Palăśa (Butea monosperma (Lamk.) Taub.) and its medico-historical study. Bull Indian Inst Hist Med Hyderabad. 2006;36(2):117-28.
- Lateef M, Iqbal Z, Khan MN, Akhtar MA, Jabbar A. Anthelmintic activity of Adhatoda vesica roots. Int J Agri and Biol. 2003;5(1):86-90.
- Sujon MA, Mostofa M, Jahan MS, Das AR, Rob S. Studies on medicinal plants against gastrointestinal nematodes of goats. Bangladesh J Vet Med. 2008;6(2):179-83.
- Winter CA, Risley EA, Nuss GW. Carrageenan-induced edema in hind paw of the rat as an assay for anti-inflammatory drugs. Proc Soc Exp Biol Med. 1962;111:544-7.
- Vijayalakshmi A, Ravichandiran V, Velraj M, Hemalatha S, Sudharani G, Jayakumari S. Anti-anaphylacticand anti-inflammatory activities of a bioactive alkaloid from the root bark of Plumeriaacutifolia Poir. Asian Pac J Trop Biomed. 2011;1(5):401-5.
- Nurcan B, Rana A, Fatih G, Nese K, Yusuf O. Investigation for anti-inflammatory and antithrombotic activities of methanol extract of Capparisovata buds and fruits. J Ethnopharmacol. 2012;142(1):48-52.
- 13. Sathiya M, Parimala P, Muthuchelian K. Preliminary phytochemical screening and antibacterial studies on the ethanolic leaf extract of Nyctanthes arbortristis Linn.

Ethnobotanical leaflets. 2008;12:638-42.

- Ramachandran B, Kamaraj M, Subramani V, Jeyakumar JJ. Screening of Phytochemistry and Secondary Metabolites: A Case Study on Nyctanthes arboritis. Int J Pharma Res Rev. 2014;3(3):7-11.
- Chidi BB, Pandeya S, Gharti KP, Bharati L. Phytochemical screening and cytotoxic activity of Nyctanthes arbor-tristis. Ind Res J Pharm and Sci. 2015;2(2):205-17.
- Hazarika A. Evaluation of anthelmintic efficacy of certain indigenous plants against experimentally- induced Ascaridia galli infection in local birds (Gallus domesticus). Ph.D.Thesis, Assam Agricultural University. 2019.
- Harborne AJ. Phytochemical methods. Guide to modern techniques of plant analysis. 2nd ed. Ghapman and Hall India. 1998;302.