Introduction
Splenosis is a result of auto-transplantation of splenic tissue following a trauma or splenectomy. It usually presents as well defined nodules in splenic bed on routine CT imaging. However, seldom it is encountered outside splenic bed, where it is difficult to differentiate splenic tissue from infection, lymph nodes or other tumors. Functional imaging is a simplified way for evaluation of splenosis. We present a case report where 99mTc Sulfur colloid helped in forming diagnosis.

Case Presentation
54 year old male underwent workup for microscopic hematuria. Non-contrast CT was suggestive of post splenectomy status with few soft tissue nodules in splenic bed, concerning for splenosis. There were numerous nodules of varied sizes in left lower quadrant along the para-colic gutter. Differential diagnosis of splenosis versus peritoneal deposits versus lymphadenopathy was made. Further evaluation with 99mTc-Sulfur colloid scan demonstrated correlative uptake in the nodules in splenic bed and left lower quadrant/ left hemi-pelvis, confirming diagnosis of splenosis.

Discussion
Incidence of splenosis is high among individuals undergoing splenectomy, and is reported as high as 58% [1]. Other causes of splenosis may be congenital, post trauma or surgery. Approximately 10% to 12% of 99mTc sulfur colloid is taken up by the splenic tissue, and hence scintigraphic imaging with this agent would be a simplified methodology to evaluate accessory spleen or splenosis. In presented case, CT scan of abdomen and pelvis demonstrated nodules in splenic bed (Figure 1), along the left colonic gutter and left hemi-pelvis (Figure 2). 99mTc Sulfur colloid scan demonstrated foci of increased tracer uptake, corresponding to the above mentioned sites, suggesting splenic tissue/splenosis.
There are more sensitive imaging available for splenosis, like 99mTc tagged heat denatured RBC scan, in which about 90% of heat denatured cells are taken up by the splenic tissues, thus increasing overall scan sensitivity and specificity. The drawback of this method is its poor availability and handling of blood products.

Additional imaging with SPECT/CT adds to the resolution of the scan [2]. Whenever a small splenic tissue/accessory spleen is under question, SPECT/CT may provide a better yield of overall imaging. In our case, patient refused SPECT/CT acquisition. However, the planar images demonstrated good uptake and correlated well with CT findings.

Conclusion

Scintigraphic imaging with 99mTc Sulfur colloid is sensitive to demonstrate accessory splenic tissue in abdomen and may assist in diagnosis in cases of clinical dilemma. Functional imaging can therefore avoid unnecessary tissue biopsy that may be required for confirmation.

References